

INTRODUCTION - OUR SPEAKERS

GLOBAL HEAD OF MARKETING

APPLICATION ENGINEER

Strengths of Pt RTDs, key properties and their advantages in your application

Heraeus As of 31.03.2023 Yageo Nexensos (formerly Heraeus Nexensos) is no longer part of the Heraeus Group.

STRENGTH OF PT RTDS, KEY PROPERTIES, AND THEIR ADVANTAGES IN YOUR APPLICATION

- 1 | CHARACTERISTICS AND STRENGTHS OF Pt RTDs
- 2 TYPICAL APPLICATIONS AND PT ADVANTAGES
- 3 NEXENSOS PRODUCTS AND KEY PROPERTIES
- 4 | SELECTION CRITERIA AND YOUR CUSTOMIZATION OPTIONS
- 5 QUESTIONS AND ANSWERS

WE EXPAND YOUR APPLICATION WINDOW TO OVER 1.000°C

high precision

minimal drift

standardized output

broad range of standard products

large volume availability

innovation power

The second of th

CHARACTERISTICS AND STRENGTHS OF Pt RTDs

PT RTD AND NTC COMPARISON

- Our sensors are based on thin film technology
- Typical configurations:
 Elements with lead wires, SMD types, SOT223, TO92

NTC thermistor – Negative Temperature Coefficient

- Bulk resistor based on semi-conductive ceramics
- Typical configurations:
 Elements with lead wires, SMD types, diode package

CHARACTERISTICS AND STRENGTHS OF Pt RTDs

HERAEUS WEBINAR

PT RTD AND NTC COMPARISON

- Typical resistance values: 100, 500, 1000 Ohm (@ 0 °C)
- Linear characteristics (TCR 3850 ppm/K)
- Positive Temperature Coefficient
- Characteristics standardized to DIN EN 60751 (IEC 60751)

NTC

- Typical resistance values: 10 000 Ohm and higher (@ +25 °C)
- Non-linear characteristics
- Negative Temperature Coefficient

CHARACTERISTICS AND STRENGTHS OF Pt RTDs

PT RTD AND NTC COMPARISON

TYPICAL APPLICATIONS AND PT ADVANTAGES

PT RTDs WITH LEAD WIRES

Features

- Ideal for assembly in tubes and probes
- Good thermal contact with planar surfaces

Strengths of Pt RTD

Applications	wide T range	extreme high/low T capability	signal drift	high accuracy	linear signal	
Exhaust gas treatment in Diesel and Gasoline cars				0	0	
Petrochemistry, Oil & Gas, Energy & Power					0	
Process monitoring and automation		0			0	
Home appliance		0		0		
Pellet grills and pellet furnace			0	0		
e-mobility charger plug protection	0					
e-motor protection		0			0	
Medical cold chain data logger		0				
Medical devices and equipment					0	
Analytic equipment					0	
Heater unit control						

TYPICAL APPLICATIONS AND PT ADVANTAGES

PT RTDs IN SMD FORMAT AND ON PCBs

Features

- Support pick & place mounting
- Compact with small footprint
- Cost efficient

Features

- SMD on PCB board (-40°C to +150°C)
- Reduce heat transfer from wires to the chip
- Simplifies assembly process for probes

	Strengths of Pt RTD							
Applications	wide T range	extreme high/low T capability	low signal drift	high accuracy	linear signal			
E-charger					0			
Data logger and tracker	0	0	0		0			
Medical devices and equipment					0			
Electronic and power electronic board protection	0				0			
T drift compensation in gas and other sensors					0			
HVAC and smart home thermostats				0	0			
HVAC probes for duct and immersion sensors				0	0			
HVAC: heat and cold meters					0			
important helpful								

Nominal Resistance

E.g. Pt100, Pt200, Pt500, Pt1000

Temperature and Tolerance Range

E.g. F 0.3 (B) for temperature ranges from -50 °C to +500 °C

> **Temperature** Coefficient (TCR)

Standard TCR = 3850 ppm/K

Measuring Current and Self-Heating

Our recommendations to avoid self-heating effects

Long-Term Stability

Typical R₀-Drift is 0.04 % after 1000 hours at 500 °C

Response Time

Measured in water current and air stream

NEXENSOS PRODUCTS AND KEY PROPERTIES

SELF-HEATING: CONTROL MEASURING CURRENT AND INSTALLATION CONDITIONS

I - Measuring Current

R - Resistance

Pt100

Pt1000

 $\Delta T = \mathbf{S} \cdot \mathbf{I}^2 \cdot \mathbf{R}$

Sensor Element

S - Self-heating coefficient

- Materials, Design
- Dimensions The smaller the sensor for a given Ohm

value, the higher the self-heating coefficient

Installation Conditions

 Housing and thermal contact to the surrounding medium impact the selfheating coefficient

Nominal Resistance

E.g. Pt100, Pt200, Pt500, Pt1000

Temperature and Tolerance Range

E.g. F 0.3 (B) for temperature ranges from -50 °C to +500 °C

> **Temperature** Coefficient (TCR)

Standard TCR = 3850 ppm/K

Measuring Current and Self-Heating

Our recommendations to avoid self-heating effects

Long-Term Stability

Typical R₀-Drift is 0.04 % after 1000 hours at 500 °C

Response Time

Measured in water current and air stream

13

KEY PT-RTD FEATURE: VERY LOW SIGNAL DRIFT, HIGH LONG-TERM STABILITY

M222 Pt1000 B: Deviation dT from ideal value at **T = 0 °C** as a function of the storage time @ **500 °C**

M-TYPE DATA SHOWN

Nominal Resistance

E.g. Pt100, Pt200, Pt500, Pt1000

Temperature and Tolerance Range

E.g. F 0.3 (B) for temperature ranges from -50 °C to +500 °C

> **Temperature** Coefficient (TCR)

Standard TCR = 3850 ppm/K

Measuring Current and Self-Heating

Our recommendations to avoid self-heating effects

Long-Term Stability

Typical R₀-Drift is 0.04 % after 1000 hours at 500 °C

Response Time

Measured in water current and air stream

15

HERAEUS NEXENSOS PRODUCTS AND KEY PROPERTIES PT RTDs HAVE A VERY FAST RESPONSE TIME

Pt RTDs have a fast response time in a range of 0.1 - 0.3 sec. The sensor element is not the limiting factor, but the housing.

Have a closer look at our latest webinar

PRODUCT NAMING - EASY ORIENTATION

Elements with lead wires

Leadless Elements

0805 0603 0402

Connection methods

- welding
- brazing
- crimping
- soft soldering (L-types)

Connection methods

- soft soldering
- bonding/glueing
- sintering + wire bonding

Your search returned 7 results

Semi-rigid encapsulated EC3032

- PT1000 B
- -50 °C to +200 °C (temporary up to 250 °C)
- IP68 protection
- Highly vibration resistant
- Response time $t_{0.9} = 8.1$ s (0.3 m/s water flow)

Thank you for your attention

